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ABSTRACT 
A multi-objective identification method for model 

updating based on modal residuals is proposed. The method 
results in multiple Pareto optimal structural models that are 
consistent with the measured modal data, the class of models 
used to represent the structure and the modal residuals used to 
judge the closeness between the measured and model 
predicted modal data. The conventional single-objective 
weighted modal residuals method for model updating is also 
used to obtain Pareto optimal structural models by varying the 
values of the weights. Theoretical and computational issues 
related to the solution of the multi-objective and single 
optimization problems are addressed. The model updating 
methods are compared and their effectiveness is demonstrated 
using experimental results obtained from a three-story 
laboratory structure tested at a reference and a mass modified 
configuration. The variability of the Pareto optimal models 
and their associated response prediction variability are 
explored using two structural model classes, a simple 3-DOF 
model class and a higher fidelity 546-DOF finite element 
model class. It is shown that the Pareto optimal structural 
models and the corresponding response predictions may vary 
considerably. The variability of Pareto optimal structural 
model is affected by the size of modelling and measurement 
errors. This variability reduces as the fidelity of the selected 
model classes increases. 

1 INTRODUCTION 
Structural model updating methods (e.g. Mottershead and 
Friswell 1993; Farhat and Hemez 1993) have been proposed in 
the past to reconcile mathematical models, usually discretized 
finite element models, with modal data obtained from 
experimental modal analysis. The optimal structural models 
resulting from such methods can be used for improving the 
model response and reliability predictions (Papadimitriou et 

al. 2001) and structural health monitoring applications (Sohn 
and Law 1997; Fritzen et al. 1998). The estimate of the 
optimal model is sensitive to uncertainties that are due to 
limitations of the mathematical models used to represent the 
behavior of the real structure, the presence of measurement 
and processing error in the modal data, the number and type of 
measured modal data used in the reconciling process, as well 
as the norms used to measure the fit between measured and 
model predicted modal properties.  

Structural model parameter estimation problems based on 
measured modal data (e.g. Bohle and Fritzen 2003) are often 
formulated as weighted least-squares problems in which 
modal metrics, measuring the residuals between measured and 
model predicted modal properties, are build up into a single 
weighted modal residuals metric formed as a weighted 
average of the multiple individual modal metrics using 
weighting factors. Standard optimization techniques are then 
used to find the optimal values of the structural parameters 
that minimize the single weighted residuals metric 
representing an overall measure of fit between measured and 
model predicted modal properties. Due to model error and 
measurement noise, the results of the optimization are affected 
by the values assumed for the weighting factors.  

The model updating problem has also been formulated in a 
multi-objective context (Haralampidis et al. 2005) that allows 
the simultaneous minimization of the multiple modal metrics, 
eliminating the need for using arbitrary weighting factors for 
weighting the relative importance of each modal metric in the 
overall measure of fit. In contrast to the conventional weighted 
least-squares fit between measured and model predicted modal 
data, the multi-objective parameter estimation methodology 
provides multiple Pareto optimal structural models consistent 
with the data in the sense that the fit each Pareto optimal 
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model provides in a group of measured modal properties 
cannot be improved without deteriorating the fit in at least one 
other modal group. These multiple Pareto optimal structural 
models are due to modelling and measurement errors. 

In this work, the structural model updating problem using 
modal residuals is first formulated as a multi-objective 
optimization problem and then as a single-objective 
optimization with the objective formed as a weighted average 
of the multiple objectives using weighting factors. Theoretical 
issues arising in multi-objective identification are addressed 
and the correspondence between the multi-objective 
identification and the weighted modal residuals identification 
is established. Computational issues associated with solving 
the resulting multi-objective and single-objective optimization 
problems are also addressed, including issues related to the 
estimation of global optima. Theoretical and computational 
issues are illustrated by applying the methodology for 
updating two model classes, a simple 3-DOF model and a 
much higher fidelity finite element model class, using 
experimentally obtained modal data from a small-scaled three-
story laboratory steel building structure tested at a reference 
and a mass modified configuration using modal data. 
Validation studies are performed to show the applicability of 
the methodologies and the advantages of the multi-objective 
identification. Emphasis is given in investigating the 
variability of the Pareto optimal models and the variability of 
the response predictions from these Pareto optimal models. 
Results demonstrate the effect of model error on model 
updating and model prediction variability.  

2 MODEL UPDATING BASED ON MODAL 
RESIDUALS  
Let the measured modal data from a structure consist of modal 
frequencies ˆ

rω  and modeshape components 0ˆ N

r Rφ ∈  at  
measured DOFs, , where m  is the number of 
observed modes. Consider a parameterized class of linear 
structural models used to model the dynamic behavior of the 
structure and let 

0N
1, ,r = m

NR θθ ∈  be the set of free structural model 
parameters to be identified using the measured modal data. Let 
also ( )

r
ω θ  and ( ) dN

r
Rφ θ ∈ , where  is the number of 

model degrees of freedom (DOF), be the predictions of the 
modal frequencies and modeshapes obtained for a particular 
value of the parameter set 

dN

θ  by solving the eigenvalue 
problem corresponding to the model mass and stiffness 
matrices ( )M θ  and ( )K θ , respectively.  

The objective in a modal-based structural identification 
methodology is to estimate the values of the parameter set θ  
so that the modal data predicted by the linear class of models 
best matches, in some sense, the experimentally obtained 
modal data. For this, the measured modal properties are first 
grouped into  groups n ig , . Each group contains 

one or more modal properties. For the i th group 

1, ,i = n

ig , a norm 

( )iJ θ  is introduced to measure the residuals of the difference 
between the measured values of the modal properties involved 
in the group and the corresponding modal values predicted 

from the model class for a particular value of the parameter set 
θ . This difference is due to modeling and measurement 
errors, always present in structural identification problems.  

The grouping of the modal properties into  groups and the 
selection of the measures of fit (residuals) 

n

1 ( ), , ( )nJ Jθ θ  
are usually based on user preference. Specifically, let  
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1, ,r m= , be the measures of fit (residuals) between the 

DN  measured set of modal data and the model predicted 
modal data for the r -th modal frequency and modeshape 
components, respectively, where 2 T|| ||z z= z  is the usual 

Euclidian norm and 
2

0 0
ˆ /T

r r r rL Lβ φ φ φ=  is a normalization 

constant that guaranties that the measured modeshape r̂φ  at 
the measured DOFs is closest to the model modeshape 

0 ( )r rLβ φ θ  predicted by the particular value of θ . The matrix 

 is an observation matrix comprised of zeros and 

ones that maps the  model DOFs to the  observed 
DOFs.  

0

0
dN NL R ×∈

dN 0N

Among the various grouping schemes available, the following 
are considered for illustration purposes. A grouping scheme 
may be defined so that each group contains one modal 
property, the modal frequency or the modeshape for each 
mode. In this case, there are  measures of fit given by 2n m=

( ) ( )
i

i
J J

ω
θ θ=  and ( ) ( )

i
m i

J J
φ

θ θ
+

= , 1, ,i m= . More 

general grouping schemes can be defined by forming  
groups 

n

ig , 1, ,i n= , with each group containing a number 
of modal properties. The measure of fit in a modal group is the 
sum of the individual measures of fit in (1) for the 
corresponding modal properties involved in the modal group. 
The modal properties assigned to each group are selected by 
the user according to their type and the purpose of the 
analysis.  

A grouping scheme is next defined by grouping the modal 
properties into two groups as follows. The first group contains 
all modal frequencies with the measure of fit 1 ( )J θ  selected 
to represent the difference between the measured and the 
model predicted frequencies for all modes, while the second 
group contains the modeshape components for all modes with 
the measure of fit 2 ( )J θ  selected to represents the difference 
between the measured and the model predicted modeshape 
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components for all modes. Specifically, the two measures of 
fit are given by  

       
1 2

1

1
( ) ( )      and      ( ) ( )

r r

m

r

J J J J
m

ω

1

1 m

rm
φ

θ θ θ
=

= =∑ θ
=

∑        (3) 

The aforementioned grouping scheme is used in the 
application section for demonstrating the features of the 
proposed model updating methodologies.  
 
2.1 Multi-Objective Identification: 
The problem of identifying the model parameter values that 
give the best fit in all groups of modal properties is formulated 
as a multi-objective optimization problem stated as follows 
(Haralampidis et al. 2005). Find the values of the structural 
parameter set θ  that simultaneously minimizes the objectives  

                        
1

( ) ( ( ), , ( ))
n

y J J Jθ θ= = θ                          (4) 

subject to inequality constrains ( ) 0g θ ≤  and parameter 

constrains low upperθ θ θ≤ ≤ , where 1( , , )Nθ

θ θ θ= ∈Θ  is the 
parameter vector,  is the parameter space, Θ

1( , , )ny y y Y= ∈  is the objective vector,  is the objective 

space, 

Y

( )g θ  is the vector function of constrains, and lowθ  and 

upperθ  are respectively the lower and upper bounds of the 
parameter vector θ . For conflicting objectives 

1 ( ), , ( )nJ Jθ θ , there is no single optimal solution, but 
rather a set of alternative solutions, known as Pareto optimal 
solutions, that are optimal in the sense that no other solutions 
in the parameter space are superior to them when all 
objectives are considered.  

Using multi-objective terminology, the Pareto optimal 
solutions are the non-dominating vectors in the parameter 
space , defined mathematically as follows. A vector Θ θ ∈Θ  
is said to be non-dominated regarding the set Θ  if and only if 
there is no vector in  which dominates Θ θ . A vector θ  is 
said to dominate a vector 'θ  if and only if  

           
( ) ( ')   {1, , }   and

  {1, , } :  ( ) ( ')

i i

j j

J J i n

j n J J

θ θ

θ θ

≤ ∀ ∈

∃ ∈ <
           (5) 

The set of objective vectors ( )y J θ=  corresponding to the 
set of Pareto optimal solutions θ  is called Pareto optimal 
front. The characteristics of the Pareto solutions are that the 
modal residuals cannot be improved in any modal group 
without deteriorating the modal residuals in at least one other 
modal group. Specifically, using the objective functions in (3), 
all optimal models that trade-off the overall fit in modal 
frequencies with the overall fit in the modeshapes are 
estimated.  

The multiple Pareto optimal solutions are due to modelling 
and measurement errors. The level of modelling and 
measurement errors affect the size and the distance from the 
origin of the Pareto front in the objective space, as well as the 

variability of the Pareto optimal solutions in the parameter 
space. For given modelling and measurement error, the Pareto 
optimal structural models may vary considerably in the 
parameter space. The variability of the Pareto optimal 
solutions also depends on the overall sensitivity of the 
objective functions or, equivalently, the sensitivity of the 
modal properties, to model parameter values θ .  The lower 
the sensitivity to modal properties, the higher the variability of 
the Pareto optimal models. Such variabilities were 
demonstrated for the case of two-dimensional objective space 
and one-dimensional parameter space in the work by 
(Christodoulou and Papadimitriou 2007).  

2.2 Weighted Modal Residuals Identification: 
The parameter estimation problem is traditionally solved by 
minimizing the single objective 

     
1

( ; ) ( )
n

i i
i

J w w Jθ θ
=

∑=       (6) 

formed from the multiple objectives ( )iJ θ  using the 

weighting factors , , with 0iw ≥ 1, ,i = n
1

1
n

ii
w

=
=∑ . The 

objective function ( ; )J wθ  represents an overall measure of 
fit between the measured and the model predicted modal data. 
The relative importance of the modal residual errors in the 
selection of the optimal model is reflected in the choice of the 
weights. The results of the identification depend on the weight 
values used. The weight values depend on the adequacy of the 
model class used to represent structural behavior and the 
accuracy with which the measured modal data are obtained. 
However, the choice of weight values is arbitrary since the 
modeling error and the uncertainty in the measured data are 
usually not known apriori. Conventional weighted least 
squares methods assume equal weight values, 

.  1 1 /nw w= = = n

It can be readily shown that the optimal solution to the 
problem (6) is one of the Pareto optimal solutions. Thus, 
solving a series of single objective optimization problems of 
the type (6) and varying the values of the weights  from 0 
to 1, excluding the case for which the values of all weights are 
simultaneously equal to zero, Pareto optimal solutions are 
alternatively obtained. These solutions for given 

iw

w  are 

denoted by ˆ( )wθ . It should be noted, however, that there may 
exist Pareto optimal solutions that do not correspond to 
solutions of the single-objective weighted least-squares 
problem. A severe drawback of generating Pareto optimal 
solutions by solving the series of weighted single-objective 
optimization problems by uniformly varying the values of the 
weights is that this procedure often results in cluster of points 
in parts of the Pareto front that fail to provide an adequate 
representation of the entire Pareto shape.  

3 COMPUTATIONAL ISSUES  
The optimization of ( ; )J wθ  in (6) with respect to θ  for 
given w  can readily be carried out numerically using any 
available algorithm for optimizing a nonlinear function of 
several variables. These single objective optimization 
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problems may involve multiple local/global optima. 
Conventional gradient-based local optimization algorithms 
lack reliability in dealing with the estimation of multiple 
local/global optima observed in structural identification 
problems (Teughels and De Roeck 2003; Christodoulou and 
Papadimitriou 2007), since convergence to the global 
optimum is not guaranteed. Evolution strategies (Beyer 2001) 
are more appropriate and effective to use in such cases. 
Evolution strategies are random search algorithms that explore 
better the parameter space for detecting the neighborhood of 
the global optimum, avoiding premature convergence to a 
local optimum. A disadvantage of evolution strategies is their 
slow convergence at the neighborhood of an optimum since 
they do not exploit the gradient information. A hybrid 
optimization algorithm should be used that exploits the 
advantages of evolution strategies and gradient-based 
methods. Specifically, an evolution strategy is used to explore 
the parameter space and detect the neighborhood of the global 
optimum. Then the method switches to a gradient-based 
algorithm starting with the best estimate obtained from the 
evolution strategy and using gradient information to accelerate 
convergence to the global optimum.  

The set of Pareto optimal solutions can be obtained by 
minimizing the objective vector (4) using available multi-
objective optimization algorithms. Among them, the 
evolutionary algorithms, such as the strength Pareto 
evolutionary algorithm (Zitzler and Thiele 1999; Haralampidis 
et al. 2005), are well-suited to solve the multi-objective 
optimization problem. These algorithms process a set of 
promising solutions simultaneously and therefore are capable 
of capturing several points along the Pareto front. They are 
based on an arbitrary initialized population of search points in 
the parameter space, which by means of selection, mutation 
and recombination evolves towards better and better regions in 
the search space. In addition, techniques such as clustering are 
introduced in the algorithms to uniformly distribute the points 
along the Pareto front, provided that the values of objective 
along the Pareto front are of the same order of magnitude.  

Another very efficient algorithm for solving the multi-
objective optimization problem is the Normal-Boundary 
Intersection (NBI) method (Das and Dennis 1998) which 
produce an evenly spread of points along the Pareto front, 
even for problems for which the relative scaling of the 
objectives are vastly different. The NBI optimization involves 
the solution of constrained nonlinear optimization problems 
using available gradient-based constrained optimization 
methods.  

The strength Pareto evolutionary algorithm, although it does 
not require gradient information, it has the disadvantage of 
slow convergence for objective vectors close to the Pareto 
front (Haralampidis et al. 2005) and also it does not generate 
an evenly spread Pareto front, especially for large differences 
in objective functions. The NBI on the other hand uses the 
gradient information, it has fast convergence for low 
dimensional objective space and generates an evenly spread 
Pareto front even for vast differences in objective values.  

4 APPLICATIONS  
Experimental data from a scaled three-story steel building 
structure are used to demonstrate the applicability and 
effectiveness of the proposed model updating methods, as well 
as investigate the prediction variability of the Pareto optimal 
structural models. A schematic diagram of the side and the 
front views of the laboratory structure are given in Figure 1. 
The floors of the building are made of identical steel beams of 
hollow orthogonal cross section. The two interstory columns 
that support each floor are made up of identical thin steel 
plates. The columns and beams are connected through angles 
with the help of bolts and nuts. The horizontal members are 
made to be much stiffer compared to the vertical structural 
elements so that the structural behaviour can be adequately 
represented by a shear beam building model. The total height 
of the structure is approximately 2.4m. The  direction of the 
frame is made to be stiffer to prevent coupling of motion with 
the 

y

x  direction, the latter being the principal direction of 
interest. The structure is considered as the reference structure 
and it is denoted by . A second structural configuration is 
considered by adding concentrated masses in both sides of 
each floor of the reference structure as shown in Figure 1. The 
added weight due to the concentrated masses is approximately 
9.5 Kg per floor, while the total added mass corresponds to 
approximately 42% of the mass of the reference structure. The 
modified structural configuration is denoted by .   
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Figure 1. Front and side views of 3-story structure 
 

The modal properties of the two structural configurations  

and  are identified from frequency response functions that 
are obtained by processing the excitation force and 
acceleration response time histories generated from impulse 
hammer tests. An array of three acceleration sensors located 
on the structure as schematically shown in Figure 1, record the 
acceleration time histories during the test along the  
direction. Multiple data sets are generated and processed that 
correspond to different excitation position of the impulse 
hammer at the second and third floor of the structure along the 

0C

1C

x
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x  direction. Table 1 and 2 reports the values of the identified 
modal frequencies and modeshape components at the 
measured locations of the lowest three bending modes for the 
reference  and mass modified  structural configurations.  0C 1C
 
Table 1. Modal frequencies and modeshapes identified 

for the reference structural configuration 

 Reference Structure  0C
Mode # 1st 2nd 3rd

Modal Freq. (Hz) 4.646 13.81 19.48 
Modeshape 
Components 

1.000 
0.8069 
0.4561 

-0.9026 
0.3009 
1.000 

-0.6448 
1.000 

-0.7801 
 
Table 2.  Modal frequencies and modeshapes identified 

for the mass modified structural configuration  

 Reference Structure  1C
Mode # 1st 2nd 3rd

Modal Freq. (Hz) 3.908 11.57 16.31 
Modeshape 
Components 

1.000 
0.8219 
0.4408 

-0.8709 
0.3528 
1.000 

-0.5708 
1.000 

-0.7892 
 
 
For each structural configuration, the following two 
parameterised model classes are introduced to represent the 
behaviour of the structure along the  direction, as well as 
will be used to investigate the effect of modelling error in 
model updating and model response prediction variability.  

x

The first model class, which is schematically shown in Figure 
2a, is a 3-DOF mass-spring chain model. The modelling is 
based on the assumptions that the floors of the structure are 
rigid and that the stiffness is provided by the interstory plates. 
A lumped mass model is considered. Specifically, the -th 
mass of the model includes the mass of the i -th floor and half 
of the mass of the interstory plates that are attached to the i -th  

i
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Figure 2. Parameterized (a) 3-DOF and (b) 546-DOF 

Models 
 

floor. Thus, based on the weights of the structural elements, 
the masses , 2  and  are taken to be equal to  

 and , where  Kg. 
The initial (nominal) values of the spring stiffnesses ,  
and  are taken to be equal, that is, . 
The ratio 0 0  between the nominal values of the 
stiffnesses and masses of the 3-DOF model was selected so as 
to minimize the difference between the first modal frequency 
predicted by the model and the first measured modal 
frequency for the structural configuration .  

1m m 3m

1 2m m m= = 0 m

k kθ= 0k

3 00.76m = 0 22.6m =

01k 02k
03k 01 02 03 0k k k k= = =

/k m

0C

The 3-DOF mass-spring chain model is parameterized 
introducing three parameters 1 , 2  and 3 , one for the 
stiffness of each spring, modelling the interstory stiffness, so 
that i , for , where  is the nominal 
value of the stiffness of each spring in the nominal model and 

 is the updated value of the stiffness of each parameterised 
spring based on the measured data. This parameterized model 
class is denoted by .  

θ θ θ

0i i 1, 2, 3i = 0ik =

ik

0Μ

For the modified structure  with added concentrated 
masses, the same 3-DOF model class is used with modified 
masses 

1C

1 1m m′+ , 2m m2
′+  and  that take into account 

the concentrated masses ,  and 
3m m′+ 3

1m′ 2m′ 3m′  added on the 
structure at each floor (see Figure 1). The parameter set θ  is 
kept the same as the one used for the reference structure. This 
parameterized model class for the modified structural 
configuration  is denoted by .  1C 1Μ

The second model class, which is schematically shown in 
Figure 2b, is a detailed finite element model. Each floor beam 
is modeled with a beam element, while the columns between 
each floor are modeled, due to its small thickness, with 12 
plate elements each. The sizes of both types of elements are 
calculated from the structural drawing. The modulus of 
elasticity and the density are based on the material properties. 
The plate elements near the joints, between columns and 
floors, are assumed to be very stiff, in order to model the large 
rigidity in these parts of the structure. The finite element 
model developed based on modeling assumptions, the 
structural drawings and the properties of the materials used, is 
referred to as the initial (nominal) finite element model. This 
model consists of 3 beam elements and 72 plate elements (24 
elements per story), while the number of DOF is 546.  

The 546-DOF finite element model is parameterised 
introducing three parameters 1 , 2  and 3θ , each one 
associated with the modulus of elasticity of the thin plate 
elements of interstory columns, so that 0i i iE , for 

, where 0 0i  is the nominal value of the 
modulus of elasticity of interstory plate elements in the initial 
finite element model and i  is the updated value of the 
modulus of elasticity of each parameterised plate element. 
This parameterized model class is denoted by .  

θ θ

Eθ=
1, 2, 3i = E E=

E

0,FEΜ
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The finite element model of the modified structure with 
concentrated masses is obtained from the finite element model 
of the reference structure by adding the known values of the 
concentrated masses at the edge nodes of the horizontal beam 
elements used to model the stiffness of the floors. The 
parameter set θ  is kept the same as the one used for the 
reference structure. This parameterized model class for the 
modified structural configuration  is denoted by .  1C 1,FEΜ

The model within each of the defined model classes with 
parameter values 1 2 3  correspond to the initial 
(nominal) model of the corresponding model classes. It should 
be emphasized that the three parameters of all four model 
classes are referred to common interstory stiffness properties 
of the 3 story structure at the reference and mass modified 
configurations.  

1θ θ θ= = =

4.1 Structural Model Updating: 
Model updating results are computed for the model classes 

 and  based on the experimental data in Table 1 

available for the reference structural configuration , as well 

as the model classes  and  based on the experimental 

data in Table 2 available for the structural configuration . 
The Pareto optimal models are estimated from the proposed 
multiobjective identification method using the NBI algorithm 
and 20 points along the Pareto front. The optimal models 
estimated for the edge points defining the CHIM in the NBI 
multi-objective algorithm are based on the hybrid optimization 
method combining evolution strategies and gradient based 
methods. The two objective functions in 

0Μ 0,FEΜ

0C

1Μ 1,FEΜ

1C

(3) are used in the 
model updating results.  

The results from the multi-objective identification 
methodology are shown in Figure 3. For each model class and 
associated structural configuration, the Pareto front, giving the 
Pareto solutions in the two-dimensional objective space, is 
shown in Figure 3a. The non-zero size of the Pareto front and 
the non-zero distance of the Pareto front from the origin are 
due to modeling and measurement errors. Specifically, the 
distance of the Pareto points along the Pareto front from the 
origin is an indication of the size of the overall measurement 
and modeling error. The size of the Pareto front depends on 
the size of the model error and the sensitivity of the modal 
properties to the parameter values θ  (Christodoulou and 
Papadimitriou 2007). It is observed that the residual errors 

1
ˆ( )J θ  and 2

ˆ( )J θ  between the measured and the model 
predicted modal properties obtained from the Pareto optimal 
models θ̂  for the higher fidelity 546-DOF model classes are 
significantly smaller than the residual errors corresponding to 
the 3-DOF model classes. Consequently, for the higher fidelity 
546-DOF model classes, the Pareto front moves closer to the 
origin of the objective space. In addition it is observed that the 
sizes of the Pareto fronts for the 546-DOF model classes 
reduce to approximately one third of the sizes of the Pareto 
fronts observed for the 3-DOF model classes. These results 
certify, at it should be expected based on the modeling 
assumptions, that the 546 model classes are higher fidelity 

models than the 3-DOF model classes. Also the results in 
Figure 3a quantify the quality of fit, acceptance and degree of 
accuracy of a model class in relation to another model class 
based on the measure data.  
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Figure 3. Pareto front and Pareto optimal solutions in 

the (a) objective space and (b-d) parameter space 
 

Figures 3b-d show the corresponding Pareto optimal solutions 
in the three-dimensional parameter space. Specifically, these 
figures show the projection of the Pareto solutions in the two-
dimensional parameter spaces 1 2( , )θ θ , 1 3( , )θ θ  and 2 3( , )θ θ . 
It is observed that a wide variety of Pareto optimal solutions 
are obtained for both model classes and structural 
configurations that are consistent with the measured data and 
the objective functions used. For each model class, the Pareto 
optimal solutions are concentrated along a one-dimensional 
manifold in the three-dimensional parameter space. 
Comparing the Pareto optimal solutions for a model class, it 
can be said that there is no Pareto solution that improves the 
fit in both modal groups simultaneously. Thus, all Pareto 
solutions correspond to acceptable compromise structural 
models trading-off the fit in the modal frequencies involved in 
the first modal group with the fit in the modeshape 
components involved in the second modal groups.  

Comparing the Pareto optimal solutions for the 3-DOF model 
classes  and 1Μ  corresponding to the two structural 

configurations  and , respectively, it can be observed 
that the length of the one-dimensional manifold in the 
parameter space for the structural configuration  is 
significantly larger than the length obtained for the structural 
configuration  which means that the variability of the 

Pareto optimal solutions for the configuration  is 
significantly higher than the variability of the Pareto optimal 
solutions for the configuration . The size of the Pareto front 
is affected by the sensitivity of the modal properties to the 
parameter values. The higher the sensitivity, the smaller the 
size of the Pareto front, which is consistent with the theoretical 
result presented for the special case of the one-dimensional 

0Μ

0C 1C

1C

0C

1C

0C
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parameter space in the work by Christodoulou and 
Papadimitriou (2007).  

Comparing the results for the 546-DOF model classes with the 
corresponding ones obtained for the 3-DOF model classes, it 
can be noted that are qualitatively similar. However, the size 
of the one dimensional optimal solutions manifolds for the 
546-DOF model classes  and  are significantly 
smaller than the size of the manifolds for the 3-DOF model 
classes  and . These results clearly demonstrate that as 
the fidelity of the model class improves, the variability of the 
Pareto optimal models reduces. This has important 
implications in the selection of the weight values used in 
weighted modal residuals method for model updating and 
model-based prediction studies.  Since the variability of the 
Pareto optimal solutions reduces as the fidelity of the models 
improves, the effect of the choice of weight on weighted 
modal residuals methods diminishes as the fidelity of the 
model increases.  

0,FEΜ 1,FEΜ

0Μ 1Μ

It should be noted that in the absence of model and 
measurement errors, the Pareto optimal models from the two 
common reference model classes referring to the common 
parameter set should coincide independently of the structural 
configuration used for obtaining experimental modal data. As 
the results in Figures 3b-d suggest, the Pareto optimal values 
of the common parameter set θ  of the 3-DOF model classes 

 and  corresponding to the two structural 

configurations  and , respectively, differ considerably 
despite the fact that the parameters for the two common 
reference model classes refer to the same interstory stiffnesses 
of the two structural configurations. The differences can be 
attributed mainly to the size of modeling errors involved in the 
3-DOF model classes. Instead, comparing the Pareto optimal 
values obtained from the 546-DOF model classes  and 

 for the two structural configurations  and , it is 
observed that the optimal solution manifolds for the 546-DOF 
model classes are significantly closer than the optimal solution 
manifolds for the 3-DOF model classes. This certifies that the 
higher fidelity models provide consistent estimates of the 
common parameters in common reference model classes 
introduced to model different structural configurations.  

0Μ 1Μ

0C 1C

0,FEΜ

1,FEΜ 0C 1C

4.2 Predictions Using Pareto Optimal Structural 
Models: 
The purpose of the identification is to construct faithful 
structural models, within a selected model class, that can be 
used for making improved structural performance predictions 
consistent with the measured data. The alternative models 
obtained along the Pareto front provide different performance 
predictions that are all acceptable based on the measured data 
and the measures of fit employed. The variability of these 
predictions is next explored.  

First, the variability in the modal properties predicted by the 
Pareto optimal models is estimated for the model classes  

and   representing structural configuration , and the 

model classes  and  representing structural 

configuration . The values of the three modal frequencies 
predicted by the Pareto optimal models are shown in Figure 4. 
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Figure 4. Variability of modal frequencies predicted by 

the Pareto optimal solutions  
 
The measured modal frequencies for structural configurations 

 and  are also shown for comparison purposes. The 
corresponding MAC values between the modeshape 
components predicted by the Pareto optimal models for each 
model class and the measured modeshapes for the three 
bending modes are shown in Figure 5. For each model class, 
different Pareto optimal models along the Pareto front result in 
different predictions of the structural modal frequencies and 
MAC values.  
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Figure 5. Variability of MAC values predicted by the 

Pareto optimal solutions  
 

A relatively large variability in the predictions is observed for 
the 3-DOF model classes  and . The percentage error 
between the Pareto optimal model predictions for the modal 
frequencies is as high as 5% for the first modal frequency for 
both model classes  and . The MAC values vary from 

0Μ 1Μ

0Μ 1Μ
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0.88 to values very close to 1.0 for both model classes  

and . It is clear that there is a trade off between the fit that 

the Pareto optimal models for model classes  and   
provide to the modal frequencies and the modeshapes. 
Specifically, the Pareto models 1 to 10 provide a very good fit 
to the modal frequencies in the expense of deteriorating the fit 
in the MAC values to values significantly smaller than one. 
The Pareto models 11 to 20 for model classes  and   
improve the MAC values to values very close to one in the 
expense of deteriorating the fit in the modal frequencies.  

0Μ

1Μ

0Μ 0,FEΜ

0Μ 0,FEΜ

Comparing the 3-DOF model classes and the 546-DOF model 
classes, the 546-DOF model classes provide significantly 
better fit in the modal frequencies than the fit provided by the 
3-DOF model classes. Also, comparing the results in Figure 5, 
it is observed that the higher fidelity 546-DOF model classes 
give MAC values between the Pareto optimal models and the 
measurements that are much closer to one than the MAC 
values obtained for the 3-DOF model class. These results 
verify that higher fidelity model classes tend to give better 
predictions that are less sensitive to selections required in 
model updating, such as the weight values used in weighted 
residuals methods.  

It should be noted that the variability in the Pareto optimal 
structural models affect considerably the variability in the 
predictions of other response quantities such as the frequency 
response function and the probability of failure. The Pareto 
optimal models can be combined with structural response and 
reliability prediction tools to quantify such variabilities.   

5 CONCLUSIONS 
A multi-objective model updating algorithm is proposed to 
characterize and compute all Pareto optimal models from a 
model class, consistent with the measured data and the norms 
used to measure the fit between the measured and model 
predicted modal properties. Theoretical and computational 
issues were demonstrated by updating a simple and a higher 
fidelity model classes using experimental data from two 
configurations of a scaled three-story steel structure. A wide 
variety of Pareto optimal structural models consistent with the 
measured modal data were obtained. The measures of fit 
values along the Pareto front may vary significantly, at least 
one order of magnitude. The variability in the Pareto optimal 
models is due to the model and measurement error. The large 
variability in the Pareto optimal models resulted in large 
variability in the structural response predictions. It has been 
demonstrated that higher fidelity model classes tend to move 
the Pareto front towards the origin and reduce the size of the 
Pareto front in the objective space, reduce the size of the 
Pareto optimal solutions manifold in the parameter space, 
provide better fit to the measured quantities, and give much 
better predictions corresponding to reduced variability.  
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